Theorems Featuring Facts of FFT Tables of Full Frequency

Sam Spiro, UC San Diego
 (the one and only speaker of this talk)

Joint Work with G. Patchell and M. R. Thought
(both of whom are definitely real and neither of whom are talking today)

Outline

1 Silliness

2 Math

3 Major Silliness

4 Math
5 Minor Silliness
6 Math

History

Historically, Zoom for Thought was called Food for Thought seminar and has been one of the cornerstones of the UCSD math program.

History

Historically, Zoom for Thought was called Food for Thought seminar and has been one of the cornerstones of the UCSD math program. As the years progressed, numerous mathematical discoveries were made, such as the Fast Fourier Transform.

History

Historically, Zoom for Thought was called Food for Thought seminar and has been one of the cornerstones of the UCSD math program. As the years progressed, numerous mathematical discoveries were made, such as the Fast Fourier Transform. With this a natural question was raised.

History

Historically, Zoom for Thought was called Food for Thought seminar and has been one of the cornerstones of the UCSD math program. As the years progressed, numerous mathematical discoveries were made, such as the Fast Fourier Transform. With this a natural question was raised.

Question (M. R. Thought; 1965)

Is it possible to give a Food for Thought Talk about the Fast Fourier Transform

History

Historically, Zoom for Thought was called Food for Thought seminar and has been one of the cornerstones of the UCSD math program. As the years progressed, numerous mathematical discoveries were made, such as the Fast Fourier Transform. With this a natural question was raised.

Question (M. R. Thought; 1965)

Is it possible to give a Food for Thought Talk about the Fast Fourier Transform, i.e. an FFT talk about the FFT?

History

Historically, Zoom for Thought was called Food for Thought seminar and has been one of the cornerstones of the UCSD math program. As the years progressed, numerous mathematical discoveries were made, such as the Fast Fourier Transform. With this a natural question was raised.

Question (M. R. Thought; 1965)

Is it possible to give a Food for Thought Talk about the Fast Fourier Transform, i.e. an FFT talk about the FFT?

This longstanding open problem was solved in the positive by Guldemond in 2020.

History

More precisely, he gave a talk entitled "Food For Thought: Fun For Theorists, Fast Fourier Transform,"

History

More precisely, he gave a talk entitled "Food For Thought: Fun For Theorists, Fast Fourier Transform," which can be abbreviated as

F	F	T
F	F	T
F	F	T

History

More precisely, he gave a talk entitled "Food For Thought: Fun For Theorists, Fast Fourier Transform," which can be abbreviated as

$$
\begin{array}{lll}
F & F & T \\
F & F & T \\
F & F & T
\end{array}
$$

This title was partially motivated by M. R. Thought, who observed that this 3×3 grid has 5 copies of the word FFT if one includes diagonals

History

More precisely, he gave a talk entitled "Food For Thought: Fun For Theorists, Fast Fourier Transform," which can be abbreviated as

$$
\begin{array}{lll}
F & F & T \\
F & F & T \\
F & F & T
\end{array}
$$

This title was partially motivated by M. R. Thought, who observed that this 3×3 grid has 5 copies of the word FFT if one includes diagonals, which is much more than the 2 instances of FFT that M . R. Thought had originally hoped for.

History

More precisely, he gave a talk entitled "Food For Thought: Fun For Theorists, Fast Fourier Transform," which can be abbreviated as

$$
\begin{array}{lll}
F & F & T \\
F & F & T \\
F & F & T
\end{array}
$$

This title was partially motivated by M. R. Thought, who observed that this 3×3 grid has 5 copies of the word FFT if one includes diagonals, which is much more than the 2 instances of FFT that M. R. Thought had originally hoped for. Is this the best one can do?

History

Question (M. R. Thought; 2020)

How many copies of the word FFT can one have in a 3×3 grid if one counts words appearing in rows, columns, or diagonals, possibly with the word written backwards?

History

Question (M. R. Thought; 2020)

How many copies of the word FFT can one have in a 3×3 grid if one counts words appearing in rows, columns, or diagonals, possibly with the word written backwards?

For example, the following are (all of the non-isomorphic) grids giving 5 copies of the word FFT.

F	F	T
F	F	T
F	T	T

F	F	T
F	F	T
T	T	T

History

It was hotly contested whether or not there existed a construction giving 6 copies of the word.

History

It was hotly contested whether or not there existed a construction giving 6 copies of the word. In a groundbreaking email, Grubb claimed the following.

History

It was hotly contested whether or not there existed a construction giving 6 copies of the word. In a groundbreaking email, Grubb claimed the following.

Thomas Grubb
6

Thomas Grubb
sike 5

Jan 15, 2020, 4:36 PM
$-$

Words in Grids

Let's try and solve a more general problem.

Words in Grids

Let's try and solve a more general problem. Let $w=w_{1} \cdots w_{n}$ be any word of length n, with the canonical example being $w=F F T$.

Words in Grids

Let's try and solve a more general problem. Let $w=w_{1} \cdots w_{n}$ be any word of length n, with the canonical example being $w=F F T$.

If G is an $n \times n$ grid filled with letters, we let $f(w, G)$ denote the number of copies of w that appear in a row, column, or diagonal of G either forwards or backwards.

Words in Grids

Let's try and solve a more general problem. Let $w=w_{1} \cdots w_{n}$ be any word of length n, with the canonical example being $w=F F T$.

If G is an $n \times n$ grid filled with letters, we let $f(w, G)$ denote the number of copies of w that appear in a row, column, or diagonal of G either forwards or backwards. We let $f(w)=\max _{G} f(w, G)$.

Words in Grids

Let's try and solve a more general problem. Let $w=w_{1} \cdots w_{n}$ be any word of length n, with the canonical example being $w=F F T$.

If G is an $n \times n$ grid filled with letters, we let $f(w, G)$ denote the number of copies of w that appear in a row, column, or diagonal of G either forwards or backwards. We let $f(w)=\max _{G} f(w, G)$.

For example, if w is the word consisting of n copies of the letter A and G is the $n \times n$ grid filled with the letter A, then $f(w, G)=2 n+2=f(w)$.

A	A	A
A	A	A
A	A	A

Words in Grids

Since there are at most $2 n+2$ lines in an $n \times n$ grid, we always have $f(w) \leq 2 n+2$ (which is best possible in general).

Words in Grids

Since there are at most $2 n+2$ lines in an $n \times n$ grid, we always have $f(w) \leq 2 n+2$ (which is best possible in general). Is there a good general lower bound that we can prove?

Words in Grids

Since there are at most $2 n+2$ lines in an $n \times n$ grid, we always have $f(w) \leq 2 n+2$ (which is best possible in general). Is there a good general lower bound that we can prove?

Lemma

For all words w of length n, we have $f(w) \geq n+2$.

Words in Grids

Since there are at most $2 n+2$ lines in an $n \times n$ grid, we always have $f(w) \leq 2 n+2$ (which is best possible in general). Is there a good general lower bound that we can prove?

Lemma

For all words w of length n, we have $f(w) \geq n+2$.

Words in Grids

The $f(w) \geq n+2$ bound turns out to be sharp when w has n distinct letters.

Words in Grids

The $f(w) \geq n+2$ bound turns out to be sharp when w has n distinct letters. While these bounds are best possible for general words, we want to obtain bounds bounds which leverage the structure of the word w.

Words in Grids

The $f(w) \geq n+2$ bound turns out to be sharp when w has n distinct letters. While these bounds are best possible for general words, we want to obtain bounds bounds which leverage the structure of the word w.

Lemma

If w has a letter A which appears k times, then $f(w) \geq 2 k+1$.

Words in Grids

The $f(w) \geq n+2$ bound turns out to be sharp when w has n distinct letters. While these bounds are best possible for general words, we want to obtain bounds bounds which leverage the structure of the word w.

Lemma

If w has a letter A which appears k times, then $f(w) \geq 2 k+1$.
The construction works by writing out w in row i whenever $w_{i}=\mathrm{A}$, and then "trying to" write w in each column. For example, if $w=$ BAACA we start with rows 2,3 , and 5 .

B	A	A	C	A
B	A	A	C	A
B	A	A	C	A

Words in Grids

The $f(w) \geq n+2$ bound turns out to be sharp when w has n distinct letters. While these bounds are best possible for general words, we want to obtain bounds bounds which leverage the structure of the word w.

Lemma

If w has a letter A which appears k times, then $f(w) \geq 2 k+1$.
The construction works by writing out w in row i whenever $w_{i}=\mathrm{A}$, and then "trying to" write w in each column. For example, if $w=$ BAACA we start with rows 2, 3, and 5.

B				
B	A	A	C	A
B	A	A	C	A
C				
B	A	A	C	A

Words in Grids

The $f(w) \geq n+2$ bound turns out to be sharp when w has n distinct letters. While these bounds are best possible for general words, we want to obtain bounds bounds which leverage the structure of the word w.

Lemma

If w has a letter A which appears k times, then $f(w) \geq 2 k+1$.
The construction works by writing out w in row i whenever $w_{i}=\mathrm{A}$, and then "trying to" write w in each column. For example, if $w=$ BAACA we start with rows 2,3 , and 5 .

B	B			
B	A	A	C	A
B	A	A	C	A
C	C			
B	A	A	C	A

Words in Grids

The $f(w) \geq n+2$ bound turns out to be sharp when w has n distinct letters. While these bounds are best possible for general words, we want to obtain bounds bounds which leverage the structure of the word w.

Lemma

If w has a letter A which appears k times, then $f(w) \geq 2 k+1$.
The construction works by writing out w in row i whenever $w_{i}=\mathrm{A}$, and then "trying to" write w in each column. For example, if $w=$ BAACA we start with rows 2,3 , and 5 .

B	B	B	B	B
B	A	A	C	A
B	A	A	C	A
C	C	C	C	C
B	A	A	C	A

Words in Grids

It turns out that one can also do well if w is very "anti-symmetric."

Words in Grids

It turns out that one can also do well if w is very "anti-symmetric."

Lemma

Let w be a word such that $w_{i}=F$ and $w_{n-i+1}=T$ for k values of i. Then $f(w) \geq 4 k$.

For example, FTZFT has $k=2$ because of $i=1,4$.

Words in Grids

It turns out that one can also do well if w is very "anti-symmetric."

Lemma

Let w be a word such that $w_{i}=F$ and $w_{n-i+1}=T$ for k values of i. Then $f(w) \geq 4 k$.

For example, FTZFT has $k=2$ because of $i=1,4$.

F	T	Z	F	T
T	F	Z	T	F
Z	Z		Z	Z
F	T	Z	F	T
T	F	Z	T	F

Words in Grids

Theorem (Patchell-Thought-S.; 2021)

Let $w=\mathrm{F}^{n-k} T^{k}$ be the word which is $n-k$ copies of F followed by k copies of T. If $1 \leq k \leq n / 2$, we have

$$
f(w)=\max \{2(n-k)+1,4 k .\}
$$

Words in Grids

Theorem (Patchell-Thought-S.; 2021)

Let $w=\mathrm{F}^{n-k} T^{k}$ be the word which is $n-k$ copies of F followed by k copies of T. If $1 \leq k \leq n / 2$, we have

$$
f(w)=\max \{2(n-k)+1,4 k .\}
$$

Corollary

The solution to the FFT problem is 5 .

Words in Grids

Theorem (Patchell-Thought-S.; 2021)

Let $w=\mathrm{F}^{n-k} T^{k}$ be the word which is $n-k$ copies of F followed by k copies of T. If $1 \leq k \leq n / 2$, we have

$$
f(w)=\max \{2(n-k)+1,4 k .\}
$$

Corollary

The solution to the FFT problem is 5 .
For the lower bounds, if k is small then the letter F appears many times and we apply the " $2 k+1$ " construction, otherwise the word is very "antisymmetric" and we apply the $4 k$ construction.

Words in Grids

Theorem (Patchell-Thought-S.; 2021)

Let $w=\mathrm{F}^{n-k} T^{k}$ be the word which is $n-k$ copies of F followed by k copies of T. If $1 \leq k \leq n / 2$, we have

$$
f(w)=\max \{2(n-k)+1,4 k .\}
$$

Corollary

The solution to the FFT problem is 5 .
For the lower bounds, if k is small then the letter F appears many times and we apply the " $2 k+1$ " construction, otherwise the word is very "antisymmetric" and we apply the $4 k$ construction. For the upper bound, we break the argument into cases based on the number of diagonals achieved.

Words in Grids

Say G contains two diagonals containing w. Then the first and last k rows can not be used.

Words in Grids

Say G contains two diagonals containing w. Then the first and last k rows can not be used.

If none of the (middle) rows contain w, then

$$
f(w, G) \leq n+2
$$

Words in Grids

If one of the $n-k$ middle rows contain w, then the k rightmost columns can't contain w.

Words in Grids

If one of the $n-k$ middle rows contain w, then the k rightmost columns can't contain w.

Thus counting rows, columns, and diagonals gives
$f(w, G) \leq(n-2 k)+(n-k)+2=2 n-3 k+2 \leq 2(n-k)+1 . \quad \square$

Words in Grids

We know that $f(w)=2 n+2$ if w uses a single letter, but can we prove better upper bounds if w is not of this form?

Words in Grids

We know that $f(w)=2 n+2$ if w uses a single letter, but can we prove better upper bounds if w is not of this form?

Lemma

If $w_{i} \neq w_{n-i+1}$ for some i, then $f(w) \leq 2 n$.

Words in Grids

We know that $f(w)=2 n+2$ if w uses a single letter, but can we prove better upper bounds if w is not of this form?

Lemma

If $w_{i} \neq w_{n-i+1}$ for some i, then $f(w) \leq 2 n$.
Consider the case $w_{1}=\mathrm{F}$ and $w_{n}=\mathrm{T}$.

Words in Grids

We know that $f(w)=2 n+2$ if w uses a single letter, but can we prove better upper bounds if w is not of this form?

Lemma

If $w_{i} \neq w_{n-i+1}$ for some i, then $f(w) \leq 2 n$.
Consider the case $w_{1}=\mathrm{F}$ and $w_{n}=\mathrm{T}$. If two of the corners of G are labeled F and the other T , then this blocks two lines, so the best we can do is $2 n$.

Words in Grids

Theorem (Patchell-Thought-S.; 2021)

If w uses two letters and is anti-symmetric (i.e. $w_{i} \neq w_{n-i+1}$ for all i), then

$$
f(w)=2 n
$$

E.g. FTFFTTFT.

Words in Grids

Theorem (Patchell-Thought-S.; 2021)

If w uses two letters and is anti-symmetric (i.e. $w_{i} \neq w_{n-i+1}$ for all i), then

$$
f(w)=2 n
$$

E.g. FTFFTTFT.

The upper bound follows from the previous lemma, and the lower bound from the $4 k$ anti-symmetric lemma (since there are $n / 2$ positions where $w_{i}=\mathrm{F}$ and $\left.w_{n-i+1}=\mathrm{T}\right)$.

Words in Grids

We showed that if some letter appears many times in w, then $f(w)$ is large.

Words in Grids

We showed that if some letter appears many times in w, then $f(w)$ is large. The converse also holds.

Words in Grids

We showed that if some letter appears many times in w, then $f(w)$ is large. The converse also holds.

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

Words in Grids

We showed that if some letter appears many times in w, then $f(w)$ is large. The converse also holds.

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

Theorem (Patchell-Thought-S.; 2021)

If each letter of w appears at most n/4 times, then

$$
f(w)=n+2 .
$$

Words in Grids

We showed that if some letter appears many times in w, then $f(w)$ is large. The converse also holds.

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

Theorem (Patchell-Thought-S.; 2021)

If each letter of w appears at most $n / 4$ times, then

$$
f(w)=n+2
$$

The lower bound follows $f(w) \geq n+2$ (which holds for all w).

Words in Grids

We showed that if some letter appears many times in w, then $f(w)$ is large. The converse also holds.

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

Theorem (Patchell-Thought-S.; 2021)

If each letter of w appears at most $n / 4$ times, then

$$
f(w)=n+2 .
$$

The lower bound follows $f(w) \geq n+2$ (which holds for all w). This result is sharp: for infinitely many n there is a word such that each letter appears at most $1+n / 4$ with $f(w)>n+2$.

Words in Grids

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

Words in Grids

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

If G contains more than $4 k+2$ copies of w, then the rows and columns contain more than $4 k$ copies of w.

Words in Grids

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

If G contains more than $4 k+2$ copies of w, then the rows and columns contain more than $4 k$ copies of w. Without loss of generality, the rows contain more than $2 k$ copies

Words in Grids

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

If G contains more than $4 k+2$ copies of w, then the rows and columns contain more than $4 k$ copies of w. Without loss of generality, the rows contain more than $2 k$ copies, and without loss of generality more than k of them are written in the forwards direction.

Words in Grids

Lemma

If each letter appears at most k times in w, then $f(w) \leq \max \{4 k, n\}+2$.

If G contains more than $4 k+2$ copies of w, then the rows and columns contain more than $4 k$ copies of w. Without loss of generality, the rows contain more than $2 k$ copies, and without loss of generality more than k of them are written in the forwards direction. This means each column contains at least $k+1$ copies of a single letter, so none of them can contain w.

Words in Grids

If w is very symmetric, then one can improve this bound by noting that writing w forwards or backwards is basically the same.

Words in Grids

If w is very symmetric, then one can improve this bound by noting that writing w forwards or backwards is basically the same.

Lemma

If each letter appears at most k times in w, and if there are s indices such that $w_{i}=w_{n-i+1}$, then

$$
f(w) \leq \max \{2 k+n-s, n\}+2 .
$$

Words in Grids

If w is very symmetric, then one can improve this bound by noting that writing w forwards or backwards is basically the same.

Lemma

If each letter appears at most k times in w, and if there are s indices such that $w_{i}=w_{n-i+1}$, then

$$
f(w) \leq \max \{2 k+n-s, n\}+2 .
$$

Theorem (Patchell-Thought-S.; 2021)

If $w_{i}=w_{n-i+1}$ for all i, then

$$
f(w)=\max \{2 k, n\}+2,
$$

where k is the maximum number of times a letter appears in w.

Words in Grids

If w is very symmetric, then one can improve this bound by noting that writing w forwards or backwards is basically the same.

Lemma

If each letter appears at most k times in w, and if there are s indices such that $w_{i}=w_{n-i+1}$, then

$$
f(w) \leq \max \{2 k+n-s, n\}+2 .
$$

Theorem (Patchell-Thought-S.; 2021)

If $w_{i}=w_{n-i+1}$ for all i, then

$$
f(w)=\max \{2 k, n\}+2,
$$

where k is the maximum number of times a letter appears in w.
In particular, if no letter of w appears more than half the time, then the trivial lower bound $n+2$ is correct.

Words in Grids

Corollary

Let w be the alternating word FTFTFT.... Then

$$
f(w)= \begin{cases}n+3 & n \text { odd } \\ 2 n & n \text { even }\end{cases}
$$

Words in Grids

Corollary

Let w be the alternating word FTFTFT.... Then

$$
f(w)= \begin{cases}n+3 & n \text { odd } \\ 2 n & n \text { even }\end{cases}
$$

In particular, $f(w)$ is very sensitive to the symmetries of w.

Questions?

Questions?

Signal!!

A Few Short Words on Short Words

Wow, what a shocking and completely unplanned development we had there.

A Few Short Words on Short Words

Wow, what a shocking and completely unplanned development we had there.

Anyways, another natural question to ask is: what if we consider words of length k inside of an $n \times n$ grid?

A Few Short Words on Short Words

Wow, what a shocking and completely unplanned development we had there.

Anyways, another natural question to ask is: what if we consider words of length k inside of an $n \times n$ grid? For example, the following 5×5 grid has 22 copies of the word CAT of length 3 .

| C | A | T | A | C |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C | A | T | A | C |
| C | A | T | A | C |
| C | A | T | A | C |
| C | A | T | A | C |

A Few Short Words on Short Words

Question

Asymptotically, how many CAT's can you fit into an $n \times n$ grid?

A Few Short Words on Short Words

Question

Asymptotically, how many CAT's can you fit into an $n \times n$ grid?
This a major open problem in Category theory with many applications.

A Few Short Words on Short Words

Question

Asymptotically, how many CAT's can you fit into an $n \times n$ grid?
This a major open problem in Category theory with many applications. You can also ask an analogous question for DOG's if that's more your style.

A Few Short Words on Short Words

Question

Asymptotically, how many CAT's can you fit into an $n \times n$ grid?
This a major open problem in Category theory with many applications. You can also ask an analogous question for DOG's if that's more your style.

More generally, we define $f(w, n)$ to be the maximum number of copies of the word w which can appear in an $n \times n$ grid.

A Few Short Words on Short Words

Question

Asymptotically, how many CAT's can you fit into an $n \times n$ grid?
This a major open problem in Category theory with many applications. You can also ask an analogous question for DOG's if that's more your style.

More generally, we define $f(w, n)$ to be the maximum number of copies of the word w which can appear in an $n \times n$ grid. Here we typically think of w as a word of length $k \ll n$.

A Few Short Words on Short Words

Question

Asymptotically, how many CAT's can you fit into an $n \times n$ grid?
This a major open problem in Category theory with many applications. You can also ask an analogous question for DOG's if that's more your style.

More generally, we define $f(w, n)$ to be the maximum number of copies of the word w which can appear in an $n \times n$ grid. Here we typically think of w as a word of length $k \ll n$.

We essentially have no tight bounds for $f(w, n)$, though we can get surprisingly close in general.

A Few Short Words on Short Words

Theorem (Patchell-Thought-S.; 2021)

If w is a word of length k, then

$$
(3 n-4 k) \cdot f(w, n, 1) \leq f(w, n) \leq 2 n \cdot f(w, n, 1)+4 \sum_{i=k}^{n} f(w, i, 1)
$$

where $f(w, n, 1)$ is the maximum number of times w can appear in a 1-dimensional grid of length n.

A Few Short Words on Short Words

Theorem (Patchell-Thought-S.; 2021)

If w is a word of length k, then

$$
(3 n-4 k) \cdot f(w, n, 1) \leq f(w, n) \leq 2 n \cdot f(w, n, 1)+4 \sum_{i=k}^{n} f(w, i, 1)
$$

where $f(w, n, 1)$ is the maximum number of times w can appear in a 1-dimensional grid of length n.

Corollary

If $f(w, n, 1) \sim \alpha n$ for some α, then

$$
3 \alpha n^{2} \lesssim f(w, n) \lesssim 4 \alpha n^{2}
$$

A Few Short Words on Short Words

The construction is to write the optimal 1-dimensional case in each row.

A Few Short Words on Short Words

The construction is to write the optimal 1-dimensional case in each row. This gives $n \cdot f(w, n, 1)$ copies from the rows, and almost all of these copies give two diagonal copies as well.

C	A	T	A	C
C	A	T	A	C
C	A	T	A	C
C	A	T	A	C
C	A	T	A	C

A Few Short Words on Short Words

The construction is to write the optimal 1-dimensional case in each row. This gives $n \cdot f(w, n, 1)$ copies from the rows, and almost all of these copies give two diagonal copies as well.

C	A	T	A	C
C	A	T	A	C
C	A	T	A	C
C	A	T	A	C
C	A	T	A	C

For the upper bound, there are at most $f(w, n, 1)$ copies of w in each of the $2 n$ rows/columns

A Few Short Words on Short Words

The construction is to write the optimal 1-dimensional case in each row. This gives $n \cdot f(w, n, 1)$ copies from the rows, and almost all of these copies give two diagonal copies as well.

C	A	T	A	C
C	A	T	A	C
C	A	T	A	C
C	A	T	A	C
C	A	T	A	C

For the upper bound, there are at most $f(w, n, 1)$ copies of w in each of the $2 n$ rows/columns, and you can also partition the diagonals into (at most) 4 1-dimensional lines of length i.

A Few Short Words on Short Words

Corollary

If $f(w, n, 1) \sim \alpha n$ for some α, then

$$
3 \alpha n^{2} \lesssim f(w, n) \lesssim 4 \alpha n^{2} .
$$

A Few Short Words on Short Words

Corollary

If $f(w, n, 1) \sim \alpha n$ for some α, then

$$
3 \alpha n^{2} \lesssim f(w, n) \lesssim 4 \alpha n^{2} .
$$

Question

Is $f(w, n, 1)$ always of this form?

A Few Short Words on Short Words

Corollary

If $f(w, n, 1) \sim \alpha n$ for some α, then

$$
3 \alpha n^{2} \lesssim f(w, n) \lesssim 4 \alpha n^{2} .
$$

Question

Is $f(w, n, 1)$ always of this form? Is this quantity easy to compute for general w ?

A Few Short Words on Short Words

Corollary

If $f(w, n, 1) \sim \alpha n$ for some α, then

$$
3 \alpha n^{2} \lesssim f(w, n) \lesssim 4 \alpha n^{2} .
$$

Question

Is $f(w, n, 1)$ always of this form? Is this quantity easy to compute for general w ?

Our main question though is in general whether the lower or upper bounds of our corollary is closer to the truth.

A Few Short Words on Short Words

Conjecture

The lower bound of the previous corollary is correct for w the word on k distinct letters, i.e.

$$
f(w, n) \sim \frac{3}{k-1} n^{2} .
$$

A Few Short Words on Short Words

Conjecture

The lower bound of the previous corollary is correct for w the word on k distinct letters, i.e.

$$
f(w, n) \sim \frac{3}{k-1} n^{2} .
$$

The lower bound may even be correct for all w, but we're far from proving this.

A Few Short Words on Short Words

Conjecture

The lower bound of the previous corollary is correct for w the word on k distinct letters, i.e.

$$
f(w, n) \sim \frac{3}{k-1} n^{2} .
$$

The lower bound may even be correct for all w, but we're far from proving this. At one point I thought I had a heuristic proof solving this for $k=2$, but we have no idea how to do this for $k=3$ (the CAT problem).

M. R. Thought

Email: fft "at" math.ucsd.edu
Office: AP\&M 9001

I am an nth year math PhD student at UC San Diego. My research interests are in snacks, and I am particularly interested
 in chips, crackers, and off-brand oreos. My advisers are Sam Spiro and Vaki Nikitopoulos. My CV can be found here.

With Sam Spiro and Vaki Nikitopoulos I co-organize Food for Thought, the Graduate Student Seminar at UCSD.

Papers and Preprints:

1. On Optimizing Snack Selection. Journal of Snacks, 2019
2. A Proof of the Riemann Hypothesis, or True Implies True. Submitted, 2019.
3. The FFT Problem (with Gregory Patchell and Sam Spiro). The American Mathematical Monthly, Accepted 2021.
